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Orientation fluctuation-induced spinodal decomposition in polymer–liquid-crystal mixtures

Akihiko Matsuyama,* R. M. L. Evans, and M. E. Cates
Department of Physics and Astronomy, The University of Edinburgh, JCMB King’s Building,

Mayfield Road, Edinburgh EH9 3JZ, Scotland, United Kingdom
~Received 4 October 1999!

We study the early stages of spinodal decomposition~SD! in polymer–liquid-crystal mixtures by solving
linearized time-dependent Landau-Ginzburg equations for concentration~conserved order parameter! and ori-
entation~nonconserved order parameter!. The theory takes into account a cross term between concentration and
orientation gradients, which becomes an important factor for phase separation kinetics. We calculate structure
factors for concentration and for orientation, depending on a quench temperature and concentration. We find a
new SD process driven by instability of the orientational order parameter. In this case, the average domain size
initially grows as a nontrivial and evolving power of time, which starts ast1/3 in our minimal model. The
domain growth is advanced by the coupling between the two order parameters.

PACS number~s!: 64.75.1g, 61.30.Gd, 61.25.Hq
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I. INTRODUCTION

A homogeneous binary mixture quenched from a sta
into a thermodynamically unstable state within a phase
gram develops into an inhomogeneous one. Among the v
ous kinetic mechanisms, spinodal decomposition~SD! is in-
duced by the instability of the order parameter~usually
concentration! which describes the system@1#. In the early
stages, the SD is interpreted within the framework of
Cahn theory for isotropic systems@2–4#. On the other hand
in the late stages, the SD is limited by diffusionlike proces
~or by hydrodynamics, which we do not treat! and exhibits
slow coarsening. In this diffusive coarsening regime, the
mains of the conserved order parameter grow ast1/3 with
time t @3,5#. On the other hand, for the case of a nonco
served order parameter such as the polarization of a fe
electric solid, we may have thet1/2 law @3,6#. In polymer–
liquid-crystal mixtures, we can expect co-occurrenc
between phase separation and liquid crystalline orde
such as nematic and smectic phases. Such inhomogen
materials, described by one conserved order parameter~con-
centration! and one nonconserved order parameter~orienta-
tional order parameter! are important for not only fundamen
tal scientific reasons but also technological applications
high modulus fiber and electro-optical devices@7,8#.

In polymer–liquid-crystal mixtures@9–18#, biphasic re-
gions between an isotropic and a nematic phase appea
low the nematic-isotropic transition~NIT! temperature of the
pure liquid-crystal molecule~mesogen!. When the system is
thermally quenched from a stable isotropic phase into
unstable part of the biphasic region, the fluctuations of c
centration and of orientation take place and isotropic or ne
atic droplets appear with time@19,20#. The instability of
these systems is driven by the competition between ph
separation and nematic ordering.

To elucidate the time evolution of the concentration a
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orientation fluctuations during the spinodal decompositi
we calculate the structure factor for concentration and
orientation using time-dependent Landau-Ginzburg~TDLG!
equations for concentration and orientational order para
eters @4,21–27#. Some years ago, Dorgan expressed
structure factors for concentration and for orientation in m
tures containing nematogens in term of the linearized TD
@24#. Recently Chiu and Kyu simulated the dynamics
phase separations in polymer–liquid-crystal mixtures@25#.
However, these theories eliminate the cross term between
gradients of the two order parameters. Some authors h
shown that this cross term plays a significant role on ph
separation kinetics of solutions containing liquid crystals
liquid-crystalline polymers@26–28#. In this paper we take
into account the cross term and calculate the structure fa
for concentration and for orientation using the lineariz
TDLG. The aim of this paper is to study the early stages
the SD. Depending on the concentration of liquid crystal,
find two types of SD. We discuss the possible mechanis
for formations of nematic droplets under the SD process
We also show simulations in one dimension~but without
linearization! to further understand our analytical results f
the structure factors.

II. PHASE DIAGRAMS OF POLYMER –LIQUID-CRYSTAL
MIXTURES

In this section we introduce the free energy to describe
static phase diagrams. There are many theories to des
the phase behaviors of polymer–liquid-crystal mixtures@13–
18#. We here focus on sufficiently flexible polymer chain
and so we neglect the orientational ordering of the polym
chains. In this paper we use for simplicity the Landau exp
sion form for the nematic free energy@18,29#. The dimen-
sionless equilibrium free energy densityf (f,S) of polymer–
liquid-crystal mixtures is given by combining the Flory
Huggins theory@30# for isotropic mixing of two components
with the Maier-Saupe theory for nematic orderin
@29,31,32#:

c-
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f ~f,S!5
12f

np
ln~12f!1

f

nl
ln f1xf~12f!

1nf2F1

2 S 12
h

3 DS22
h

9
S31

h

6
S4G , ~2.1!

wheref is the volume fraction of the liquid crystals andS is
the ‘‘scalar’’ orientational order parameter of the liquid cry
tals discussed further below,np is the number of segment
on the polymer,nl is axis ratio of the liquid crystal molecule
andh[nlnf. The valuex([U0 /kBT) is the Flory-Huggins
interaction parameter related to isotropic interactions
tween unlike molecular species andn([Ua /kBT) param-
etrizes the orientation-dependent~Maier-Saupe! interactions
between the mesogens@32#. The coexistence~binodal! curve
of the phase equilibrium is derived by a double tang
method where the equilibrium volume fractions fall on t
same tangent line to the free energy curve. The spinodal
which separates metastable from unstable composition
given by the inflection point of the free energy (]2f /]f2)T
50.

A typical phase diagram on the temperature-concentra
plane is shown in Fig. 1 which is calculated withnp5nl
52 and n/x51.4 @18#. The reduced temperaturet
([T/TNI°) is normalized by the nematic-isotropic transitio
~NIT! temperatureTNI° of the pure liquid crystal~at f51).
According to Eq.~2.1!, this temperature is given byTNI°
53nlUa/8kB where the nematic phase hasS50.25@29#. The
critical solution point in the isotropic phase is atf50.5 and
t50.95. The solid curve refers to the binodal and the dot
line shows the first-order NIT of a hypothetical homog
neous phase. The dash-dotted line shows the spinodal.
that the origin is suppressed on thef axis. Whent50.831,
we have a triple point where two isotropic liquid phas
(L11L2) and a nematic phase~N! can simultaneously coex
ist. Below the triple point, we have the two-phase coex
ence between an isotropic and a nematic phase. Such p
diagrams are observed in mixtures ofn-tetracosane and nem
atic liquid crystal@11#. In the biphasic region between th
nematic and the isotropic phases, we have two differ
metastable regions: an isotropic metastable~Im! and a nem-

FIG. 1. Phase diagram of a polymer–liquid-crystal mixture w
np5nl52 andn/x51.4. The solid curve refers to the binodal an
the dotted line shows the first-order NIT line. The dash-dotted
shows the spinodal. Filled circles indicate temperature quenc
from the stable isotropic phase into the isotropic unstable~Iu; A)
and nematic unstable~Nu; B, C) regions.
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atic metastable~Nm!, and two unstable regions: an isotrop
unstable~Iu; A) and a nematic unstable~Nu; B, C) @16–18#.
On increasing the molecular weightnp of the polymer, the
critical solution point shifts to higher temperatures a
higher concentrations of mesogens and the Nu and Iu reg
also shift to higher temperatures and higher concentrat
with increasingnp @16–18#.

Filled circles indicate temperature quenches from
stable isotropic phase into the isotropic unstable~Iu; A) and
nematic unstable~Nu;B, C) regions. The region (A), lying
below the isotropic spinodal curve and above the NIT lin
corresponds to a system which is initially unstable with
spect to concentration fluctuations, but metastable to or
tation fluctuations. The region (B), between the isotropic
spinodal curve and the NIT line, is initially unstable to bo
concentration and orientation fluctuations. In the region~C!
between the isotropic spinodal curve and the nematic s
odal curve, the system is initially unstable with respect
orientation fluctuations, but metastable to concentration fl
tuations. Thus if we thermally quench from an isotrop
phase to these different regions, we can expect a variet
SD processes even in the early stages. In the next sectio
consider the phase separation dynamics for two order par
eters appropriate to this problem.

III. KINETIC EQUATIONS

We consider polymer-mesogen mixtures described by
conserved order parameter~volume fractionf of mesogen!
and one nonconserved order parameter~orientational order
parameterSi j ). Since the orientational order parameter is
traceless symmetric tensor, its components can be expre
as @33,34#

Si j 5
3

2
S~r !S ni~r !nj~r !2

1

3
d i j D , ~3.1!

where i , j 5x,y,z denote the components along three o
thogonal coordinate axes,n(r ) is a local director, andS(r ) is
the scalar orientational order parameter referred to pr
ously. The dynamics of the mixture is described by t
coupled time-dependent Ginzburg-Landau equations@23–
28# for the two order parameters. In the inhomogeneous s
tem under nonequilibrium conditions, spatial variations o
cur in the two order parameters. The total free energy~F! can
be expressed in terms of a local bulk free energy den
f (f,Si j ) and the gradients of the two order paramet
@26,28,33#:

F@f,Si j #5E drF f ~f,Si j !1
K0

2
~¹f!21L0~] if!~] jSi j !

1
L1

2
~]kSi j !

21
L2

2
~] iSik!~] jSjk!G , ~3.2!

where the free energyF and f are dimensionless quantitie
~divided by kBT), T is the absolute temperature,kB is the
Boltzmann constant, andK0 , L0 , L1 , L2 are phenomeno-
logical coefficients derived from a mean field theory@26,27#.
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In this paper we take these coefficients as constant. Equa
~2.1! is recovered from the following expression for the bu
free energy density:

f ~f,Si j !5
12f

np
ln~12f!1

f

nl
ln f1xf~12f!

1
1

2
A~f!Si j Sji 2

1

3
B~f!Si j SjkSki

1
1

4
C~f!Si j SjkSklSli , ~3.3!

where

A~f!5
2

3 S 12
h

3 D nf2, ~3.4!

B~f!5
4

15
hnf2, ~3.5!

C~f!5
1

27
hnf2. ~3.6!

In considering the nonequilibrium equations of motion f
our system, we adopt a thermodynamic point of view. T
phenomenological equation of motion for the concentrat
f, which ensures local conservation of material, is given
@3,4#

]f~r ,t !

]t
5Gf¹2S dF

df D
5Gf¹2F ] f

]f
2K0¹2f2L0] i] jSi j G , ~3.7!

where the thermodynamic force which drives the flux
given by the gradient of the chemical potentialm5dF/df
andGf is the mobility, assumed constant. On the other ha
for the nonconserved order parameterSi j , we take the local
rate of change to be linearly proportional to the local th
modynamic force]F/]Si j @3,4#. The equation of motion for
Si j is then given by

]Si j ~r ,t !

]t
52GSS dF

dSi j
1L~r ,t !d i j D

52GSF ] f

]Si j
2L0] i] jf2L1¹2Si j

2
L2

2
~] i]kSk j1] j]kSki!1L~r ,t !d i j G ,

~3.8!

where the transport coefficientsGf andGS are taken as con
stant. The kinetic equations could in principle be made m
general, by writing the Onsager coefficientG as a matrix.
This would allow one order parameter to be driven by g
dients in the chemical potential of the other@26#. However,
as this is not the phenomenon under investigation, we se
off-diagonal matrix elements to zero for simplicity. The o
on
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entational order parameter evolves in such a way as to lo
the free energy, but it must do so subject to the constr
that it remains traceless. The Lagrange multiplierL in Eq.
~3.8! will be chosen to ensure conservation of the trace ofSi j
@35#.

We study here a linearized analysis of the phase sep
tion kinetics and define variablesdf(r ,t)5f(r ,t)2f0 and
dSi j (r ,t)5Si j (r ,t)2Si j ,0 , wheref0 andSi j ,0 are the values
of concentration and orientation in the initial homogeneo
system, respectively. The equilibrium free energy can be
panded about the initial homogeneous state of the unifo
concentration (f0) and orientational order (Si j ,0) in the early
stage:

f ~f,Si j !5 f ~f0 ,Si j ,0!1S ] f

]f D df1S ] f

]Si j
D dSi j . ~3.9!

When this expansion is substituted into Eqs.~3.7! and~3.8!,
linear equations of motion are obtained fordf and dSi j ,
with coefficients that depend on first and second derivati
of the bulk free energy densityf (f,Si j )0, which we shall
now evaluate.

In this paper we consider thermal quenches from
stable isotropic phase into the nematic unstable region~Nu!
and the isotropic unstable region~Iu! in Fig. 1. When the
initial homogeneous state is isotropic, we can setSi j ,050.
From Eq.~3.3!, the required derivatives off are then given
by (] f /]Si j )050, and by

f ff[~]2f /]f2!05
1

np~12f0!
1

1

nlf0
22x, ~3.10!

f fS[~]2f /]f]Si j !050, ~3.11!

and the matrix of second derivatives with respect toSi j be-
comes diagonal, with components

f SSd i j [~]2f /]Si j
2 !05

2

3
nf0

2~12nlnf0/3!d i j .

~3.12!

The first derivative (] f /]f)0 is nonzero but, being constan
it is removed by the¹2 operator in Eq.~3.7!. Thus, substi-
tuting Eq. ~3.9! into the kinetic equations~3.7! and ~3.8!
yields the coupled partial differential equations

]

]t
df~r ,t !5Gf@ f ff¹2df2K0¹4df2L0¹2] i] jdSi j #,

~3.13!

]

]t
dSi j ~r ,t !52GSF f SSd i j dSi j 2L0] i] jdf2L1¹2dSi j

2
L2

2
~] i]kdSk j1] j]kdSki!1Ld i j G , ~3.14!

where the indicesi j of the first Kroneckerd are not summed
over. Note that, for a quench from the isotropic phase
considered here, the only coupling betweenf andSi j enters
through the cross-gradient coefficientL0.

In the Fourier representation, the differential equatio
~3.13! and ~3.14! become
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]

]t
df~q,t !52Gfq2@~ f ff1K0q2!df~q,t !

1L0qiqjdSi j ~q,t !#, ~3.15!

]

]t
dSi j ~q,t !52GSH ~ f SSd i j 1L1q2!dSi j ~q,t !

1
L2

2
@qiqkdSk j~q,t !1qjqkdSki~q,t !#

1L0qiqjdf~q,t !1L~q,t !d i j J . ~3.16!

The above equations are valid at early times, when the
earization about the initial~uniform, unoriented! state is
valid. Since the initial state is isotropic, the response mus
independent of the directionq and so, following Ref.@26#,
we can define az axis to be oriented alongq, qi5qd iz . At
linear order, the concentration only couples to the compon
Szz of the orientational order parameterSi j . As a result, we
find

]

]t
df~q,t !52a~q! df~q,t !2b~q!dSzz~q,t !,

~3.17!

a~q![Gf~ f ff1K0q2!q2, ~3.18!

b~q![GfL0q4, ~3.19!

for the concentration and

]

]t
dSzz~q,t !52GS@ f SS1~L11L2!q2#dSzz~q,t !

2GSL0q2df~q,t !2GSL~q,t ! ~3.20!

for dSzz. The other diagonal components of the orientatio
order parameter obey

]

]t
dSxx~q,t !52GS~ f SS1L1q2!dSxx~q,t !2GsL~q,t !,

~3.21!

]

]t
dSyy~q,t !52GS~ f SS1L1q2!dSyy~q,t !2GsL~q,t !.

~3.22!

The solution of Eqs.~3.21! and ~3.22! for dSxx anddSyy is

dSxx~q,t !5dSyy~q,t !

5dSxx~q,0!exp@2e~q!t#

1GSE
0

t

L~q,t !exp@2e~q!~ t2t1!#dt1 ,

~3.23!

where

e~q![GS~ f SS1L1q2!. ~3.24!
-

e

nt

l

Note that off-diagonal components ofdSi j are decoupled,
and simply decay exponentially, with rate constantGSL1q2,
or GS(L11L2)q2 if one coordinate index isz.

Adding Eqs. ~3.20!, ~3.21!, and ~3.22! and demanding
tracelessness (Sii 50) yields

L~q,t !52
L0

3
q2df~q,t !2

L2

3
q2dSzz~q,t !. ~3.25!

Substituting this expression for the Lagrange multiplier in
Eq. ~3.20!, the equation of motion for the componentSzz of
the orientational order parameter becomes

]

]t
dSzz~q,t !52c~q! dSzz~q,t !2d~q! df~q,t !,

~3.26!

where

c~q![GSF f SS1S L11
2

3
L2Dq2G , ~3.27!

d~q![
2

3
GSL0q2. ~3.28!

Finally, the linearized coupled equations fordf and
dSzz, Eqs.~3.17!, ~3.26!, are solved, giving

df~q,t !5u1~q!exp@v1~q!t#1u2~q!exp@v2~q!t#,

~3.29!

dSzz~q,t !5u3~q!exp@v1~q!t#1u4~q!exp@v2~q!t#,
~3.30!

where the growth ratesv1 andv2 are given by

v1~q!5
1

2
@2a~q!2c~q!1A~c~q!2a~q!!214b~q!d~q!#,

~3.31!

v2~q!5
1

2
@2a~q!2c~q!2A@c~q!2a~q!#214b~q!d~q!#,

~3.32!

and the four coefficients in Eqs.~3.29! and~3.30! are given,
as a function of wave numberq, by

u1~q!5
1

v1~q!2v2~q!
$2@v2~q!1a~q!#df~q,0!

1b~q!dSzz~q,0!%, ~3.33!

u2~q!5
1

v1~q!2v2~q!
$@v1~q!1a~q!#df~q,0!

2b~q!dSzz~q,0!%, ~3.34!

u3~q!5
1

v1~q!2v2~q!
$2@v2~q!1c~q!#dSzz~q,0!

1d~q!df~q,0!%, ~3.35!



tr

g
e

ng
le
th
ix

th

e

to

p

m
y

D

tion
ns
y

ith

ve

ith
um

a-

use

e 0
f
he
ing

ri-

he
in
the

n

t
e

PRE 61 2981ORIENTATION FLUCTUATION-INDUCED SPINODAL . . .
u4~q!5
1

v1~q!2v2~q!
$@v1~q!1c~q!#dSzz~q,0!

2d~q!df~q,0!%. ~3.36!

These results can be used to study the time evolution
various structure factors. The structure factor for concen
tion is defined by

Sf~q,t ![^udf~q,t !u2&, ~3.37!

and that for the componentSzz of the orientational order
parameter is given by

SS~q,t ![^udSzz~q,t !u2&. ~3.38!

Before the quench, the structure factorsSf andSS have the
Ornstein-Zernike form:

Sf~q,0!5@u1~q!1u2~q!#25^udf~q,0!u2&

5
1

f ff
0 1K0q2

, ~3.39!

SS~q,0!5@u3~q!1u4~q!#25^udSzz~q,0!u2&

5
1

f SS
0 1~L112L2/3!q2

, ~3.40!

where f ff
0 , f SS

0 are the second derivatives off before the
quench, when we are somewhere above the two-phase re
in Fig. 1. We shall take the prequench temperature to bt
51. So Eqs.~3.39! and ~3.40! set the initial conditions (t
50).

Equations~3.29! and ~3.30! allow the calculation of the
structure factor for concentration as measured by small a
light scattering or x-ray scattering. Experimentally, for sing
component nematics, orientational fluctuations dominate
scattering, although this need not be true for the binary m
tures considered here. For simplicity, we consider only
zzorientational structure factorSS(q,t) @Eq. ~3.38!# although
in principle, Eq.~3.23! and the remarks following it could b
used to find that of other components ofSi j .

IV. RESULTS AND DISCUSSION

In this section we plot some results of the structure fac
calculations for the concentration and for the orientationSzz
in the case of the thermal quench from the stable isotro
phase (t51) into the nematic unstable~Nu! and isotropic
unstable regions~Iu! in Fig. 1. We here setGf51, GS51,
K050.4, L050.2, andL15L250.1 for a typical example. In
using dimensionless units, we are measuring length, ti
and energy in the characteristic molecular units of the s
tem.

A. Spinodal decomposition induced
by concentration fluctuations

It is informative first to consider the behavior of the S
with L050. When L050, we obtainb(q)5d(q)50 and
then the kinetic equations~3.17! and ~3.26! have no cross
of
a-

ion

le

e
-
e

r

ic

e,
s-

term between concentration and orientation. The equa
~3.17! results in the Cahn theory of SD for isotropic solutio
@2#. The structure factor for concentration is given b
^udf(q,t)u2&5^udf(q,0)u2&exp@22a(q)t#. When f ff.0,
the amplitude of any concentration fluctuation decreases w
time becausea(q).0 and so the system is stable. Iff ff
,0, concentration fluctuations are unstable for the wa
vector in the range 0,q,q05(2 f ff /K0)1/2 and the ampli-
tude of the corresponding modes grows exponentially w
time. The structure factor for concentration has a maxim
at q5qm(5q0 /A2) and vanishes at all times forq50 be-
cause the concentration is conserved@*df(r )dr50#. On
the other hand, the structure factor forSzz is given by
^udSzz(q,t)u2&5^udSzz(q,0)u2&exp@22c(q)t#. The eigenvalue
c(q) is nonzero atq50 because the orientational order p
rameterS is not conserved. Whenf SS.0, the amplitude of
any orientation fluctuation decreases with time beca
c(q).0 and the system is stable. Iff SS,0, orientation fluc-
tuations are unstable for the wave number in the rang
,q,q15$2 f SS/@L11(2/3)L2#%1/2 and the amplitudes o
the corresponding modes grow exponentially with time. T
structure factor for orientation decreases with increas
wave numberq @23# because the amplitudec(q) monotoni-
cally increases with increasingq. The orientation fluctuation
with q50 corresponds to a macroscopic fluctuation of a o
entational order parameter throughout the system.

When L0 has nonzero values (.0), we have a coupling
between fluctuations of concentration and orientation. T
structure factors will be affected by this cross term even
the linear regime of the SD studied here. Figure 2 shows
two growth ratesv1(q) ~solid line! andv2(q) ~dotted line!
of Eqs.~3.31! and~3.32!. The initial concentrationf0 of the
liquid crystal is varied, witht50.6 after the quench. Whe
f050.55 in the Iu region, the growth ratev1(q) has positive
values in the range 0,q,q0(52.21) and has a maximum a
qm51.3. This maximum is driven by the instability of th
concentration fluctuation,f ff,0. The other eigenvalue

FIG. 2. Two growth ratev1(q) ~solid line! andv2(q) ~dotted
line! are shown against the wave numberq. Concentrationf0 of the
liquid crystal is varied with fixed temperaturet50.6.
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v2(q) has negative values for allq becausef SS.0. On in-
creasing the concentration, the growth ratev1(q) has two
peaks. One is the peak atq50, which is induced by the
instability of the orientation fluctuationf SS,0 and the other
is the peak atqm , which is driven by the instability of the
concentration fluctuationf ff,0. The hybridization of ei-
genvalues appears at aroundf050.72. At f50.77, the am-
plitude of these two peaks becomes equal. Further increa
the concentration of the mesogen, the value of the pea
q50 becomes larger than that atqm . In the Nu region
(C)(f050.85), in which the system is outside the isotrop
spinodal curve (f SS,0, f ff.0), the growth ratev1(q) de-
creases with increasingq.

Figures 3~a! and 3~b! show the temporal evolution of th
compositional structure factorSf and of the orientationa
structure factorSS , respectively, for the temperature quen
into the Iu region (t50.6,f50.55) in Fig. 1. The structure
factor for concentration has a maximum atqm which corre-
sponds to the peak wave number ofv1(q). With time the
corresponding mode grows exponentially and the peak p
tion qm is invariant. The time evolution of the structure fa
tor Sf is the same as that of the Cahn theory for isotropic
@2,3#. The structure factorSS decreases with increasingq at
very early times. The amplitude of the peak atq50 de-
creases with time becausef SS.0. With time another peak
appears in theSS curve, corresponding to the peak atqm in
v1(q), and the orientation fluctuation grows exponential
In this quench, the concentration fluctuation initially induc
the SD and the orientational ordering within the doma
subsequently takes place due to the coupling between
two order parameters as time progresses.

Figure 4 shows the structure factors for the tempera
quench into the Nu region (B)(t50.6,f50.72) in Fig. 1. In
the Nu region (B), the system is unstable with respect
both orientational order (f SS,0) and concentration (f ff
,0). The structure factorSf , Fig. 4~a!, has a maximum a
the wave numberqm at whichv1(q) has a peak. The corre

FIG. 3. Temporal evolution of the compositional structure fac
~a! Sf and of the orientational structure factor~b! SS , for the tem-
perature quench into the Iu region~A! (t50.6,f50.55) in Fig. 1.
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sponding mode grows exponentially with time. As shown
Fig. 4~b!, the structure factorSS decreases with increasingq
at very early stages. The amplitude of the peak atq50 in SS
increases with time becausef SS,0. As time increases, an
other peak appears in theSS curve atqm , which corresponds
to the maximum ofv1(q). The orientation fluctuations ar
induced by the concentration fluctuations. The correspond
mode grows exponentially with time, so at later times t
fastest growing mode~at qm) is dominant.

Figure 5 shows the structure factors for the temperat
quench witht50.6, f50.78, which is also in the Nu region
~B! of Fig. 1. The structure factorSf @Fig. 5~a!# has a maxi-
mum and the corresponding mode grows exponentia
However, the peak positionqm slightly shifts to lower values
of q with time ~see Fig. 8!. The structure factorSS @Fig. 5~b!#

r FIG. 4. Temporal evolution of the compositional structure fac
~a! Sf and of the orientational structure factor~b! SS , for the tem-
perature quench into the Nu region~B! (t50.6,f50.72) in Fig. 1.

FIG. 5. Temporal evolution of the compositional structure fac
~a! Sf and of the orientational structure factor~b! SS , for the tem-
perature quench into the Nu region~B! (t50.6,f50.78) in Fig. 1.
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decreases with increasingq because the amplitude of th
growth ratev1(q) at q50 is larger than that atqm as shown
in Fig. 2.

B. Spinodal decomposition induced by orientation fluctuations

Further increasing the initial concentration of mesog
the orientational fluctuation becomes dominant. Figure
shows the temporal evolutions of the structure factors fo
temperature quench into the Nu region~C! (t50.6,f
50.85), where the system is initially unstable with respec
orientational order parameter (f SS,0) and metastable with
respect to concentration (f ff.0). In the very early stages
the concentration fluctuation becomes weak with time
causef ff.0. However, the orientational fluctuations gro
exponentially with time becausef SS,0. Further increasing
time, a peak inSf appears and shifts to lower values of t
wave number. There is no longer any time stage in which
peak position inSf is invariant, which was predicted b
Cahn’s linearized theory for isotropic SD in the early stag
@2,3#. The instability of the orientational ordering initiall
induces the SD and the concentration fluctuation is indu
by the coupling between the two order parameters. T
change of the peak wave number inSf can be understood b

FIG. 6. Temporal evolution of the compositional structure fac
~a! Sf and of the orientational structure factor~b! SS , for the tem-
perature quench into the Nu region~C! (t50.6, f50.85) in Fig. 1.

FIG. 7. The coefficientsu1(q) andu2(q) in the structure factor
Sf plotted as a function of the wave numberq for the quench (t
50.6,f50.85).
,
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examining the two coefficientsu1(q) andu2(q) as shown in
Fig. 7. With time, the termu2(q)exp@v2(q)t# in Eq. ~3.29!
tends towards zero becausev2(q) is everywhere negative a
shown in Fig. 2. However, the product ofu1(q) and an ex-
ponential containingv1(q)t has a peak because the value
u1(q) increases from zero~see Fig. 7!, while v1(q) de-
creases from a positive value with increasingq. As time
increases, the factor exp@v1(q)t# becomes large, butu1(0)
50, and so the peak in theSf shifts to the lower values o
the wave numberq.

When the orientation fluctuation is dominant,f SS! f ff ,
we havev1(q)@v2(q) and 2c(q)@2a(q) as shown in
Fig. 2. Then we can neglect thev2(q) and a(q) terms in
Eqs. ~3.29! and ~3.31!. The structure factorSf can be ap-
proximated by

Sf~q,t !'u1
2~q!exp@2v1~q!t#, ~4.1!

where

v1~q!'
1

2 F2GSF f SS1S L11
2

3
L2Dq2G

1AGS
2F f SS1S L11

2

3
L2Dq2G2

1
8

3
GSGfL0

2q6G ,
~4.2!

u1
2~q!'F b~q!

v1~q!G
2

SS~q,0!. ~4.3!

The peak wave numberqm is given by (]Sf /]q)qm
50:

t52
1

u1~qm! S ]u1~q!

]q D
qm

Y S ]v1~q!

]q D
qm

. ~4.4!

Substituting Eqs.~4.2! and ~4.3! into ~4.4!, we obtain

t'
1

v1~qm!
. ~4.5!

At large q, the growth ratev1(q) is governed, in our mini-
mal model, by theL0

2q6 term in the square root of Eq.~4.2!
and so we obtain the growth law

qm;t21/3. ~4.6!

r

FIG. 8. Temporal evolutions of the scattering wave numberqm

at which the compositional structure factor has a maximum. T
initial concentration is varied at fixedt.
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This describes a regime where the growth of droplets
driven by the cross termL0 between the local gradients o
the two order parameters. At intermediateq, the GS@L1
1(2/3)L2#q2 term in Eq.~4.2! becomes dominant and so th
growth law is given by

qm;t21/2. ~4.7!

At small q, we find

qm;t21, ~4.8!

because theGSf SS@L11(2/3)L2#q2 term in the square root o
Eq. ~4.2! becomes dominant. When the peak wave num
qm is shifted to smaller values with time, the time depe
dence of the average domain sizeR and of the wave numbe
qm is given by

R52p/qm;ta, ~4.9!

where, in our model, the dynamical exponenta changes,
with increasing time, from 1/3 through 1/2 to 1. If a mo
elaborate model were used, incorporating terms of hig
order in q or perhaps off-diagonal components of the O
sager mobility matrix, then the values of the exponenta
might be modified. Nevertheless, we have demonstra
what we expect to be generic qualitative behavior: that
scattering peak of the orientation-induced SD evolves c
tinuously to lower wave numbers. Hence the average dom
size is time dependent in the Nu region (C), in spite of the
linearized analysis of the TDLG.

This means that the SD is advanced by the instability
the orientational ordering and no longer follows Cahn
theory which predicts no shift in the peak ofSf in the early
stages. Recent simulations indeed suggest that the cou
of phase separation and ordering leads to a faster ons
phase separation@28#. Nakai et al. have experimentally ob
served the phase separations of poly~ethylene
terephthalate!–liquid-crystal mixtures and reported the cha
acteristic length initially follows the power law 1/3, the
crosses over to the 1 regime@20#. If we thermally quench
into the Nu region (C), the growth of domains takes plac
sooner than in the usual SD of the isotropic phase sep
tions.

To summarize these results of our linearized analysis,
show in Fig. 8 the values ofqm for the density structure
factor Sf for various initial concentrationsf0. In the Iu re-
gion (A), the peak wave numberqm is invariant during the
early stages of the SD. On increasing the initial concen
tion, we find that the scattering peak shifts to the lower v
ues with time. Whenf050.85 ~region C), the scattering
peak forSf changes ast21/3 ~the average domain size in
creases ast1/3 even in the early stages!. The instability of the
orientational ordering induces the concentration fluctuat
through the coupling between two order parameters.

C. Simulations in one dimension

To further understand our analytical results, nonline
coupled differential equations were simulated in one spa
dimension with periodic boundary conditions. A tracele
tensor order parameter cannot be defined in one dimens
but a reasonable extension of the model to 1D is to use
is
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bulk free energy density of Eq.~2.1! with square gradient
terms for the concentrationf and thescalarorder parameter
S. We then evolve the order parameters according to
nonlinear equations of motion

ḟ5Gf¹2
dF

df

Ṡ52GS

dF

dS
,

which havethe same linear regime@Eqs.~3.17, 3.26!# as the
three-dimensional, tensorial equations of motion~3.7!, ~3.8!.
The time step and grid spacing areDt50.001 andDz50.5,
respectively, and 100 grid points were used. The initial c
ditions for the concentrationf(z) and the scalar orienta
tional order parameterS(z) at each lattice point are given b
random numbers distributed uniformly inf(z)5f060.02
andS(z)560.02, respectively.@This choice is computation
ally expedient, and leads to a white-noise power spectr
somewhat different from the Ornstein-Zernike form of Eq
~3.39! and ~3.40!.# Initially, the system is in an isotropic
phase. Figures 9, 10, and 11 show the results of simulat
for temperature quenches from the isotropic state tot50.6
with f050.55, f050.77, andf050.85, respectively. The
solid ~dotted! line shows the concentration~scalar orientation
order parameter! profile. In the case of region (A), with f0
50.55@Fig. 9#, we first observe the concentration fluctuatio

FIG. 9. Time evolution of the compositional~solid line! and
orientational ~dotted line! order parameters for the temperatu
quench (t50.6,f50.55) in Fig. 1.
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in the early stage (t51) and the isotropic domains appea
With time the concentration fluctuation and the orientatio
fluctuation within the domains grow (t53). At the late stage
(t550), we observe the coarsening process. In region (B), at
f050.77@Fig. 10#, fluctuations in both order parameters b
gin to grow from about the same time (t55). The size of the
domains becomes large earlier than in region (A). In the case
of f050.85 @region (C), Fig. 11#, we first observe the ori-
entation fluctuations in the early stage (t55), but the system
is still isotropic. As time increases, the orientation fluctu
tions become large and induce concentration fluctuatio
The size of the domains grows with time. Att57, the inte-
rior of some domains is in a nematic phase. On increas
the concentration of liquid crystal, the growth of drople
takes place in the earlier stages of the SD.

These simulations are consistent with the analytical
sults. They show how the phase separation dynamics
polymer–liquid-crystal mixtures is driven by the competitio
between phase separation and nematic ordering. On inc
ing the concentration of liquid crystal, the instability of th
orientational ordering becomes dominant and the mechan
of the SD is changed from concentration fluctuation-induc
SD to orientation fluctuation-induced SD. The cross te
between gradients plays a significant role in the early st
SD.

FIG. 10. Time evolution of the compositional~solid line! and
scalar orientational~dotted line! order parameters for the temper
ture quench (t50.6,f50.77) in Fig. 1.
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V. CONCLUSION

We have studied the early stages of spinodal decomp
tion ~SD! in polymer–liquid-crystal mixtures by solving lin
earized time-dependent Landau-Ginzburg equations for c
centration ~conserved order parameter! and orientation
~nonconserved order parameter!. The theory takes into ac
count a cross term between concentration and orienta
gradients. This term plays a significant role in the ea
stages of the SD. We calculated the structure factor for c
centration and for orientation in the thermal quenches fr
the stable isotropic phase into the Iu or Nu region. We fi
two distinct growth mechanism in the SD. One is the co
centration fluctuation-induced SD in the Iu region. In th
case the behavior of the SD follows Cahn’s linearized the
which means no shift in the peak of the compositional str
ture factor is observed in the early stage. The other gro
mechanism is a SD driven by the instability with respect
orientational order in the Nu region (C). In this case, the
peak positionqm in the compositional structure factor shif
to lower values of the wave number with time. Our reaso
able minimal model predicts that the mean radius of doma
initially grows ast1/3, though this power may be nonunive
sal. There is no longer the time stage predicted by the C
linearized theory. On increasing the concentration of the m
sogens, the behavior of the SD is changed from the conc
tration fluctuation- to orientation fluctuation-induced S
Though we have performed a linear analysis of the ph

FIG. 11. Time evolution of the compositional~solid line! and
orientational ~dotted line! order parameters for the temperatu
quench (t50.6,f50.85) in Fig. 1.
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separation in polymer–liquid-crystal mixtures, these res
will also be useful to understand other nematic systems
cluding semiflexible polymers, liquid-crystalline polymer
and rodlike colloids. The main conclusions were confirm
by a numerical solution of appropriate nonlinear equations
motion in one dimension.
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